Let X be a scheme. Recall that X is regular at
$$x \in X$$
 if
generators of $m_x = \dim \mathcal{O}_x$.
 $\left(\dim_{k(x)} m_x / m_x^2 \right)$
Def: X is regular in codimension one if every local ring
 \mathcal{O}_x of dimension one is regular (hence a DVR).

Geometrically, this means that the singular locus has codimension > 1.

Ex: If
$$X = \operatorname{Spec} A_{J}$$
 dim $\mathcal{O}_{X,P} = I \iff \operatorname{codim} P = I$. So X is
regular iff A_{P} is a DVR for every codim I prime.
(This will automatically be satisfied if A is normal.—see A-M)

To define Weil divisors, for the remainder of the section, we'll assume:

an element of Div X, which is defined

Div X :=
$$\left\{ \sum_{i=1}^{n} a_i P_i \mid P_i \in X \text{ is a prime divisor, } a_i \in \mathbb{Z} \ n \ge 0 \right\}$$

i.e. The free abelian group generated by the prime divisors.

If D=∑a; Pi is a Weil divisor and a; ≥0 for all i, thin D is effective.

Since X is integral, recall from HW#3 that the function field of X is $K(X) = O_{X,Z}$, the stalk at the generic point Z. You showed that K(X) is a field and if $U = SpecA \subseteq X$ is open, then K(X) = field offractions of A.

Let
$$Y \subseteq X$$
 be a prime divisor. Then by assumption $O_{X,Y}$ (stalk at generic point of Y) is a DVR.

Note that $\mathcal{O}_{X,\eta} = \lim_{u \in Y \neq \emptyset} \mathcal{O}_{X}(u) \hookrightarrow K(X).$ K(X) is the field of fractions of $\mathcal{O}_{X,\eta}$:

Let $U = \operatorname{Spec} A \subseteq X$ be an open affine meeting Y (i.e. containing the generic point of Y). Then Y corresponds to a height one (codim one) prime P & Spec A.

Then $O_{x,n} = A_p$ (do you see why?), which has field of fractions K(x).

The corresponding valuation $v_{y} : K(x)^* \rightarrow \mathbb{Z}$ is called the valuation of Y.

We can write elements of
$$K(x)$$
 as $\frac{1}{g}$ where $f, g \in A$,
and $V_{\gamma}(f_{g}) = V(f) - V(g)$. Recall that $V(f) = highest$
power of max'l ideal of Ap containing f .

$$\mathcal{O}_{P^2,V} = \mathbb{C}[X,Y]_{P}$$
 is the local ring w/ max'l ideal $(X^3 - Y^2)_{P^2,V}$.

$$v_{v}\left(\frac{z^{3}}{x^{3}}\right) = 0$$
 since this is a unit.

 $v_{\mathbf{v}}\left(\frac{z^3}{x^3-y^2z}\right) = -1$, since it is the inverse of a uniformizing parameter.

Hore generally, if $f \in K(X)^*$ and $Y \subseteq X$ a prime divisor, $v_{Y}(f) > 0 \iff f$ has a zero along Y of that order $v_{Y}(f) < 0 \iff f$ has a pole along Y of that order.

(so e.g.
$$X^2Y$$
 has a zero along $V(X)$ of order 2.)

Lemma: let X be a scheme and $f \in K(X)^*$ nonzero. Then $v_{Y}(f) = 0$ for all but finitely many prime divisors $Y \subseteq X$.

Pf: let U = SpecA be an open affine on which f is regular. Set $Z = X \setminus U$, a closed subset. X is Noetherian, so Z can contain at most finitely many prime divisors (Do you see why?). All the others meet U.

Thus, it suffices to show that there are only finitely many prime divisors Y of U for which $v_y(f) \neq 0$.

Since f is regular on U, $f \in A$, so $v_{y}(f) \ge 0$, and $v_{y}(f) \ge 0$ iff $f \in P$, where P is the codim I prime defining Y. These correspond to minimal primes of A/(f), of which there are only finitely many. (Equivalently, V(f) can only contain finitely many closed irred. subsets of U of codim 1.) \Box

Elements of the function field define Weil divisors on X as follows:

Def: let f & K(x). Define the divisor of f, denoted (f),

by
$$(f) := \sum_{\substack{Y \subseteq X \\ Prime \\ divisor}} v_{Y}(f)$$

(By the lemma, this is a finite sum) Any divisor of this form is called a principal divisor.

Note that if $f,g \in K^*$, then (f/g) = (f) - (g).

In particular, $K^* \longrightarrow \text{Div} X$, defined $f \longmapsto (f)$ is a group homomorphism, with image the subgroup of principal divisors. The cokernel of this map is called the <u>divisor class group of X</u>, denoted CIX.

Def: D, D' \in Div X are <u>linearly equivalent</u>, written D ~ D', if D - D' is a principal divisor. That is, if D and D' have the same image in CIX.

In general, CIX is have to calculate, but we can calculate it in some examples:

EX: X = Spec A, A a UFD. We know from CA that A is a UFD (=> all codim I primes are principal. Thus, if Y is a prime divisor, then the corresponding codim I prime P is principal. Thus, all prime divisors are principal, to all divisors are. Thus, CIX = O. In fact, the converse holds when X is normal!

(⇐) Let PEA be a codiml prime. We need to show P is principal. Let YEX be the corresponding prime divisor.

Since
$$C(X = 0)$$
, there's some $f \in K$ s.t. $(f) = Y$. Thus,
 $v_{Y}(f) = 1$, so f generates the maximal ideal PAp $\subseteq Ap$.

Let
$$P' \in A$$
 be another prime ideal of codim one and Y'
The corresponding divisor. Then $v_{Y'}(f) = 0$, so $f \in A_{P'}$.
Commaly
(result
Thus, $f \in \bigcap_{codimP=1}^{codimP=1} A$. In particular, $f \in A \cap PA_P = P$.

So we just need that
$$(f) = P$$
. Let $g \in P$. Then $v_y(g) \ge 1$
and $v_y(g) \ge 0$ for any prime divisor Y' (since $g \in A \le A p'$)

Thus,
$$\nabla_{y'}(g/f) \ge 0$$
 for all $Y' \implies g'_f \in all A_{p'} \implies g'_f \in A$
so f divides $g \Rightarrow g \in (f) \implies (f) = P. \square$

Example: Divisors on \mathbb{P}_{k}^{n} : let $X = \mathbb{P}_{k}^{n}$, $D = \sum n_{i}Y_{i} \in Div X$. We define the degree of D to be $deg D = \sum n_{i} deg Y_{i}$

where deg Y: = degree of generator of homog. ideal of Yi.

If $f \in K^*$, then $f = \frac{G}{H}$, G, H homogeneous of the same degree d. Thus, G and H both define a union of hypersurfaces whose degrees sum to O. Thus,

where $deg(f) = \Sigma n_i deg Y_i - \Sigma m_j deg Z_j = 0$.

Moreover, any divisor of degree O is principal. To see this, lef D is a divisor and deg D = d. We write

$$D = D_1 - D_2$$

where D_1 , D_2 are effective of degrees d_1 , d_2 so that $d = d_1 - d_2$. Let G_i be the homog. poly. describing D_i .

(We can find such Gi since an irred. hypersurface in P^h corr. to a codim one homog. prime in k[xoj..., xh], which is principal. Let Gi be the product of the corresponding generators.)

By abuse of notation, write $(G_i) = D_i$, so that $D = (G_i) - (G_i)$.

Define $f = \frac{G_1}{G_2 x_0^d}$. Then $(f) = (G_1) - (G_1) - dH$, where H is the hyperplane $x_0 = 0$.

 \Rightarrow D~dH. In particular, if deg D=O, then D~O, so D is principal. This yields the following:

Prop: $Cl P_{k}^{h} = 0.$

Pf: let deg: DivX→R be the degree function, which is clearly a homomorphism. We showed that the kernel is exactly the set of principal divisors. Thus it induces on ison. deg: CIX = R. D

 E_X : let X be a scheme and $Z \subsetneq X$ closed. Set U = X - Z.

If $Y \subseteq X$ is a prime divisor, then $Y \cap U$ is either empty or a prime divisor on U (Note it can't have greater codim: $O_{X,Y} = O_{U,Y}$ when the generic point of Y is in U.) Thus, we have a homomorphism

where we ignore empty $Y_i \cap U$. Note that this is well-defined since if $f \in K(X)^*$, then $f \in K(U)^*$, so $(f) \mapsto (f)$.

Every prime divisor of U is The intersection of U w/ some prime divisor in X, so The map is surjective.

If $codim ? \ge 2$, then ? con't contain any prime divisor of X, so the map is an isomorphism.

If codim Z = 1 and Z is integral, then the kernel of the map is generated by Z. That is

$$\pi \longrightarrow C(X \longrightarrow C(U \longrightarrow O))$$
 is exact.
 $(\mapsto 7)$

Ex: If $Z \subseteq \mathbb{P}_{k}^{2}$ is a curve of degree d, and $U = \mathbb{P}_{k}^{2} - Z$, thus we have $CIX \cong \mathbb{R}$ and the image of Z is d, so $CIU \cong coker (\mathbb{R} \longrightarrow \mathbb{R}) \cong \mathbb{R}/d\mathbb{R}$. $I \longmapsto d$

$$\frac{\text{Claim}}{X \times z^{\mu}} C(X \times A^{\nu}).$$

Pf: See Har 6.6.

We'll use this to calculate the class group in the following example.

Ex: let Q be the nonsingular quadric surface xy = z w in \mathbb{P}_{k}^{3} . Recall that (Q is the image of the segre embedding $\mathbb{P}_{k}^{'} \times_{k} \mathbb{P}_{k}^{'} \hookrightarrow \mathbb{P}_{k}^{2}$

(see I Ex 2.15 in Hartshorne. Do this problem if you've never done it before!)

let p, pz be the projections of Q onto the two factors. Then for each p;, we define a map

$$Cl \mathbb{P}' \longrightarrow Cl(\mathbb{Q})$$
$$D = \Sigma n_i Y_i \longmapsto p_i^* D = \Sigma n_i p_i^{-1}(Y_i)$$

Note that since the generic point of Q maps to the generic point of \mathbb{P}' , p_i induces an inclusion of fields $K(\mathbb{P}') \hookrightarrow K(Q)$

so if $f \in K(|P'|)^*$, we have $P_i^*((f)) = (f)$, making the map a homomorphism.

Let
$$Y = \{x\} \times P'$$
, $x \in P'$ some point.
Then $Q - Y = A' \times P'$ and we
get a composition
 $C \mid P^{\frac{1}{p_{*}}} \cap C \mid Q \longrightarrow C \mid (A' \times P')$

which is the isomorphism from above. Thus p^{*}_z (and p^{*}_i) are injective. We also have the exact sequence

$$\mathcal{R} \longrightarrow C(Q) \longrightarrow C((A' \times P') \longrightarrow O).$$

$$I \longmapsto Y$$
But $\mathcal{R} \cong C(P')$, so this map is just p_i^* , so it's
$$I \longmapsto p_i$$

injective. Thus, we have $0 \longrightarrow \overline{\mathcal{Z}} \xrightarrow{p_i^*} C(Q \longrightarrow C((A' \times P') \longrightarrow 0))$ $1 \xrightarrow{p_z^*} = 1$ so by the splitting lemma, $C(Q = \lim p_i^* \oplus \lim p_z^* \cong \overline{\mathcal{Z}} \oplus \overline{\mathcal{Z}})$. For any divisor D in $C(Q, D^*(a, b))$, some $a, b \in \overline{\mathcal{Z}}$. We say D has type (a, b).

Ex: let $A = \frac{k(x_1, y_1, z)}{(xy - z^2)}$, and let X be the singular quadric surface $X = \operatorname{Spec} A$.

Let Y be cut out by
the ideal
$$(y,z)$$
.
Note that Y has codim 1
since A has dim 2 and
 $(y,z) \notin (x,y,z)$. Thus, Y is a prime divisor, so we have
 $\overline{Z} \rightarrow CIX \rightarrow CI(X-Y) \rightarrow O$
 $I \longmapsto Y$

Consider the local ring $O_{X,Y} = A_{(y,z)}$. $\frac{x}{1}$ is a unit, so the max'l ideal is $(y,z) = (z^2,z) = (z)$.

Then the divisor
$$(y) = 2 \cdot Y$$
 since $y \in (z)^2$ in $\mathcal{O}_{x,y}$.

Note that set theoretically, V(y,z) = V(y), since $z^2 \in (y)$, so $(y) = (y, z^2)$. Thus, X - Y = Spec Ay. $A_y = \frac{k[x, y, y^{-1}, z]}{(xy - z^2)} \implies x = \frac{z^2}{y}$, so $A_y \stackrel{\sim}{=} k[y, y^{-1}, z]$, which is a UFD, so CI(X - Y) = O.

Thus, we have $\mathcal{R} \longrightarrow CIX$, which is generated by Y, and 2Y = O. Thus, we have either CIX = O or $\frac{\mathcal{R}}{2\mathcal{R}}$.

However, A is integrally closed (check!) but not a UFD.

Thus, $CIX \neq O$, so $CIX = \frac{R}{2R}$.